sexta-feira, 10 de maio de 2019



Lei de Ohm, assim designada em homenagem ao seu formulador —o físico alemão Georg Simon Ohm (1789-1854)[1]— afirma que, para um condutor mantido à temperatura constante, a razão entre a tensão entre dois pontos e a corrente elétrica é constante. Essa constante é denominada de resistência elétrica.[2]

    Lei de Ohm[editar | editar código-fonte]

    Quando essa lei é respeitada por um determinado condutor mantido à temperatura constante, este é denominado condutor ôhmico. A resistência de um dispositivo condutor é dada pela equação[3]:
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    ou
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde:
     é a diferença de potencial elétrico (ou tensão, ou d.d.p.), medida em volt (V);
     é a intensidade da corrente elétrica, medida em ampère (A) e
     é a resistência elétrica, medida em ohm (Ω).
    Essa expressão não depende da natureza do condutor: ela é válida para todos os condutores. Para um dispositivo condutor que obedeça à lei de Ohm, a diferença de potencial aplicada é proporcional à corrente elétrica, isto é, a resistência é independente da diferença de potencial e da corrente. Um exemplo de dispositivo que obedece à essa lei —muito utilizado em aparelhos eletrônicos como rádios, televisores e amplificadores— é o resistor. Sua função é controlar a intensidade de corrente elétrica que passa pelo aparelho.[4]
    Entretanto, para alguns materiais como os semicondutores, a resistência elétrica não é constante. Mesmo que a temperatura seja, ela depende da diferença de potencial . Estes materiais são denominados condutores não ôhmicos. Um exemplo de componente eletrônico que não obedece à lei de Ohm é o diodo.

    Interpretação da resistência elétrica[editar | editar código-fonte]

    A resistência elétrica pode ser entendida como a dificuldade de se estabelecer uma corrente elétrica num determinado condutor. Por exemplo, um fio de nicromo precisa ser submetido à uma diferença de potencial elétrico de 300 V para que seja estabelecida uma corrente de 1 A, enquanto um fio de tungstênio precisa ser submetido à apenas 15 V para que nele se estabeleça a mesma corrente. Isto significa que a resistência elétrica do nicromo é maior do que a do tungstênio:[5]
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    Determinação da Resistência[editar | editar código-fonte]

    A resistência elétrica de um condutor homogêneo, e de seção transversal constante, é proporcional ao seu comprimento , inversamente proporcional à sua área transversal  e depende da temperatura e do material de que é feito o condutor:[5][6]
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    A grandeza  chama-se resistividade elétrica e é característica do material e da temperatura. Sua unidade de medida é o ohm-metro ( m). Ela é inversamente proporcional condutividade elétrica .

    Formulação microscópica[editar | editar código-fonte]

    Em um condutor metálico isolado, os elétrons estão num estado de movimento aleatório, não apresentando deslocamento preferencial, em média, em nenhuma direção. Se este condutor tem seus terminais ligados aos de uma bateria, um campo elétrico  é criado em todos os pontos no interior do condutor e atua sobre os elétrons de forma a produzir um movimento de arrasto, que é a corrente elétrica. Em condutores ôhmicos, o vetor densidade de corrente elétrica , cujo módulo é igual à corrente elétrica dividida pela área de seção transversal,  (quando a corrente é uniformemente distribuída pelo condutor), é proporcional ao campo elétrico  [6]. O fator de proporcionalidade entre a densidade de corrente e o campo elétrico é a condutividade elétrica :
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Esta é a relação microscópica equivalente à relação macroscópica . Pode-se dizer também que um material condutor obedece à lei de Ohm se a condutividade  for independente de  e de .
    A unidade de medida da condutividade é o siemens por metro (S/m). Materiais que conduzem melhor a corrente elétrica são aqueles que possuem os valores mais altos de . A prata, o cobre e o alumínio, por exemplo, são bons condutores, enquanto a mica e o vidro são maus condutores [2].

    A relação macroscópica da lei de Ohm a partir da relação microscópica[editar | editar código-fonte]

    Fio de comprimento l e área transversal apercorrido por uma corrente elétrica I na presença de um campo elétrico E.
    A relação macroscópica  pode ser obtida da relação microscópica  a partir do seguinte exemplo [3].
    Considere um segmento de fio condutor de comprimento  e seção reta , com uma corrente . Para que o campo elétrico não varie apreciavelmente, o segmento do fio deve ser muito pequeno. Sendo o campo elétrico dirigido da esquerda para a direita, o potencial é mais baixo neste lado do que no outro, de forma que se tem
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde  é o módulo do campo elétrico. A corrente no condutor é igual ao produto da densidade de corrente pela área de seção reta:
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde usou-se a lei de Ohm na forma microscópica na passagem anterior. Sendo assim,
    substituindo  por , obtém-se
    A expressão entre parênteses pode ser definida como:
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    e, então, obtém-se a relação
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    Variação da resistividade com a temperatura[editar | editar código-fonte]

    Nos metais, os elétrons da última camada eletrônica estão fracamente ligados a átomos individuais, podendo mover-se livremente. Quando a temperatura aumenta, a amplitude do movimento dos íons da rede cristalina também aumenta, o que dificulta a locomoção dos elétrons livres. Em outras palavras, isto quer dizer que a resistividade aumenta com a temperatura. Para uma ampla gama de substâncias, esse aumento é linear, dentro de uma larga faixa de temperaturas. Isto pode ser descrito pela seguinte equação [7]:
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde:
     é a resistividade à temperatura ,
     é a resistividade à temperatura  e
     é o coeficiente de temperatura da resistividade e é positivo para os metais.
    Nos semicondutores a resistividade diminui com o aumento da temperatura. Isto acontece, porque as flutuações térmicas a altas temperaturas provocam a promoção de elétrons ligados a transportadores de carga livres [5].
    A resistividade de alguns condutores desaparece bruscamente abaixo de uma temperatura crítica, quando estes são resfriados, podendo manter uma corrente por muito tempo sem necessidade do uso de baterias. Esse fenômeno é chamado de supercondutividade e foi divulgado pela primeira vez em 1911 pelo físico holandês Heike Kamerlingh Onnes[4].

    Modelo microscópico clássico para a condutividade elétrica de metais[editar | editar código-fonte]

    Em um metal, os elétrons que não estão presos aos átomos e podem movimentar-se livremente são chamados elétrons de condução [6]. Classicamente, a velocidade quadrática média de agitação térmica dos elétrons à temperatura  pode ser estimada via Teorema da equipartição [7]:
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Ou seja,
    Nesta equação
     é o valor médio do quadrado da velocidade dos elétrons devido a agitação térmica,
     é a massa do elétron e
     é a constante de Boltzmann.
    Na ausência de um campo elétrico externo, o movimento dos elétrons no metal é caótico e o valor da velocidade de agitação térmica obtido mostra que esse movimento é muito rápido. Entretanto, se um campo elétrico externo constante é aplicado, os elétrons passam a se deslocar, em velocidade muitíssimo pequena, na direção oposta a do campo, devido à sua carga negativa. Consequentemente, eles experimentam uma aceleração  devido à força elétrica , onde  é a carga do elétron em módulo. De acordo com a segunda lei de Newton,
    ou
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde
     é a aceleração do elétron.
    À primeira vista, parece que, como as cargas estão sendo aceleradas, a corrente está aumentando com o tempo, e a lei de Ohm afirma que um campo elétrico constante produz uma corrente constante, o que implica uma velocidade constante. Isto parece contradizer o argumento anterior [8].
    Entretanto, as frequentes colisões dos elétrons que acontecem ao longo do fio fazem com que eles sofram desaceleração. Desta forma, mesmo que eles estejam se acelerando entre as colisões, o resultado global é uma velocidade média constante. Após uma colisão, essa velocidade varia em média de , em que  é o tempo médio entre duas colisões, representado por  e  é a distância média percorrida pelo elétron entre duas colisões, conhecida como livre caminho médio.
    O valor médio da velocidade devida a ação do campo elétrico será dada, então, por
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    A velocidade  pode ser expressa em termos da densidade de corrente elétrica :
    onde  é o número de elétrons livres por unidade de volume e o sinal de menos é devido ao fato de que as cargas em movimento são negativas. Igualando este resultado ao anterior, obtém-se
    ou
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    em que vê-se que a densidade de corrente induzida  é proporcional ao campo elétrico , assim como na lei de Ohm. Entretanto, não se pode afirmar que a quantidade seja um bom modelo para a condutividade elétrica de metais, já que a dedução apresentada aqui foi baseada em argumentos puramente clássicos. Por exemplo, experiências mostram que a altas temperaturas, a resistividade elétrica desses materiais varia linearmente com a temperatura e o modelo aqui apresentado implica numa variação proporcional a  devido ao termo  no denominador da expressão anterior. Ainda assim, o modelo clássico de movimento de arrasto na presença de campo elétrico superposto ao movimento aleatório térmico devido a colisões com átomos do material, conhecido como modelo de Drude, apresenta os ingredientes básicos que definem a condutividade. Um tratamento adequado para o problema da condutividade elétrica em metais é dado pela Mecânica Quântica.

    Potência dissipada num resistor[editar | editar código-fonte]

    Quando um resistor é percorrido por uma corrente elétrica , devida a uma tensão  fornecida por uma fonte de energia, ele se aquece. Esse aquecimento, chamado de efeito Joule, é resultado da transformação da energia que vem da fonte em energia térmica no resistor. A energia transformada em calor por unidade de tempo é a potência dissipada[4]e é calculada pela equação
    A unidade de medida da potência é o watt (W).
    Usando , obtém-se
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Outra relação envolvendo potência e resistência elétrica também pode ser obtida usando :
    x

    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Por terem essa finalidade de transformar energia elétrica em energia térmica, os resistores também estão presentes nos aquecedores elétricos de ambiente, nos chuveiros elétricos, nos ferros elétricos de passar roupa, nos soldadores elétricos etc [5].













    AS DIMENSÕES CATEGORIAIS DE GRACELI NÃO ESTÃO RELACIONADAS COM ESPAÇO GEOMÉTRICO [LATITUDE, LONGITUDE, ALTURA], OU O TEMPO MAS COM AAS CATEGORIAS DE GRACELI [TIPOS, NÍVEIS, POTENCIAIS E TEMPO DE AÇÃO SOBRE A MATÉRIA, A ENERGIA E OS FENÔMENOS COM AS VARIAÇÕES TRANSCENDENTES E INDETERMINADAS.



    COMO O EXPOSTO ABAIXO;


    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D










    mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


    um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

    o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


    ΤG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da química, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

    O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


    Com isto pode-se dividir a física em quatro grandes fases:

    a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D











    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].